Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Describing the processes that regulate the flows and exchanges of water within the atmosphere and between the atmosphere and Earth’s surface is critical for understanding environmental change and predicting Earth’s future accurately. The heavy-to-light hydrogen and oxygen isotope ratios of water provide a useful lens through which to evaluate these processes due to their innate sensitivity to evaporation, condensation, and mixing. In this review, we examine how isotopic information advances our understanding about the origin and transport history of moisture in the atmosphere and about convective processes—including cloud mixing and detrainment, precipitation formation, and rain evaporation. Moreover, we discuss how isotopic data can be used to benchmark numerical simulations across a range of scales and improve predictive skill through data assimilation techniques. This synthesis of work illustrates that, when paired with air mass thermodynamic properties that are commonly measured and modeled (such as specific humidity and temperature), water’s isotope ratios help shed light on moist processes that help set the climate state.more » « less
- 
            The last glacial period was punctuated by cold intervals in the North Atlantic region that culminated in extensive iceberg discharge events. These cold intervals, known as Heinrich Stadials, are associated with abrupt climate shifts worldwide. Here, we present CO2measurements from the West Antarctic Ice Sheet Divide ice core across Heinrich Stadials 2 to 5 at decadal-scale resolution. Our results reveal multi-decadal-scale jumps in atmospheric CO2concentrations within each Heinrich Stadial. The largest magnitude of change (14.0 ± 0.8 ppm within 55 ± 10 y) occurred during Heinrich Stadial 4. Abrupt rises in atmospheric CO2are concurrent with jumps in atmospheric CH4and abrupt changes in the water isotopologs in multiple Antarctic ice cores, the latter of which suggest rapid warming of both Antarctica and Southern Ocean vapor source regions. The synchroneity of these rapid shifts points to wind-driven upwelling of relatively warm, carbon-rich waters in the Southern Ocean, likely linked to a poleward intensification of the Southern Hemisphere westerly winds. Using an isotope-enabled atmospheric circulation model, we show that observed changes in Antarctic water isotopologs can be explained by abrupt and widespread Southern Ocean warming. Our work presents evidence for a multi-decadal- to century-scale response of the Southern Ocean to changes in atmospheric circulation, demonstrating the potential for dynamic changes in Southern Ocean biogeochemistry and circulation on human timescales. Furthermore, it suggests that anthropogenic CO2uptake in the Southern Ocean may weaken with poleward strengthening westerlies today and into the future.more » « less
- 
            Abstract Stable isotope ratios of H (δ2H), O (δ18O), and C (δ13C) are linked to key biogeochemical processes of the water and carbon cycles; however, the degree to which isotope-associated processes are reflected in macroscale ecosystem flux observations remains unquantified. Here through formal information assessment, new measurements ofδ13C of net ecosystem exchange (NEE) as well asδ2H andδ18O of latent heat (LH) fluxes across the United States National Ecological Observation Network (NEON) are used to determine conditions under which isotope measurements are informative of environmental exchanges. We find all three isotopic datasets individually contain comparable amounts of information aboutNEEandLHfluxes as wind speed observations. Such information from isotope measurements, however, is largely unique. Generally,δ13C provides more information aboutLHas aridity increases or mean annual precipitation decreases.δ2H provides more information aboutLHas temperatures or mean annual precipitation decreases, and also provides more information aboutNEEas temperatures decrease. Overall, we show that the stable isotope datasets collected by NEON contribute non-trivial amounts of new information about bulk environmental fluxes useful for interpreting biogeochemical and ecohydrological processes at landscape scales. However, the utility of this new information varies with environmental conditions at continental scales. This study provides an approach for quantifying the value adding non-traditional sensing approaches to environmental monitoring sites and the patterns identified here are expected to aid in modeling and data interpretation efforts focused on constraining carbon and water cycles’ mechanisms.more » « less
- 
            Abstract Cloud condensation and hydrometeor evaporation fractionate stable isotopes of water, enriching liquid with heavy isotopes; whereupon updrafts, downdrafts, and rain vertically redistribute water and its isotopes in the lower troposphere. These vertical water fluxes through the marine boundary layer affect low cloud climate feedback and, combined with isotope fractionation, are hypothesized to explain the depletion of tropical precipitation at higher precipitation rates known as the “amount effect.” Here, an efficient and numerically stable quasi‐analytical model simulates the evaporation of raindrops and enrichment of their isotope composition. It is applied to a drop size distribution and subcloud environment representative of Atlantic trade cumulus clouds. Idealized physics experiments artificially zero out selected processes to discern the separate effects on the isotope ratio of raindrops, of exchange with the environment, evaporation, and kinetic molecular diffusion. A parameterization of size‐dependent molecular and eddy diffusion is formulated that enriches raindrops much more strongly (+5‰ for deuterated water [HDO] and +3.5‰ for O) than equilibrium evaporation as they become smaller than 1 mm. The effect on evaporated vapor is also assessed. Rain evaporation enriches subcloud vapor by +12‰ per mm rain (for HDO), explaining observations of enriched vapor in cold pools sourced by evaporatively cooled downdrafts. Drops smaller than 0.5 mm evaporate completely before falling 700 m in typical subtropical marine boundary layer conditions. The early and complete evaporation of these smaller drops in the rain size distribution enriches the vapor produced by rain evaporation.more » « less
- 
            Abstract The hydrologic cycle is a fundamental component of the climate system with critical societal and ecological relevance. Yet gaps persist in our understanding of water fluxes and their response to increased greenhouse gas forcing. The stable isotope ratios of oxygen and hydrogen in water provide a unique opportunity to evaluate hydrological processes and investigate their role in the variability of the climate system and its sensitivity to change. Water isotopes also form the basis of many paleoclimate proxies in a variety of archives, including ice cores, lake and marine sediments, corals, and speleothems. These records hold most of the available information about past hydrologic variability prior to instrumental observations. Water isotopes thus provide a ‘common currency’ that links paleoclimate archives to modern observations, allowing us to evaluate hydrologic processes and their effects on climate variability on a wide range of time and length scales. Building on previous literature summarizing advancements in water isotopic measurements and modeling and describe water isotopic applications for understanding hydrological processes, this topical review reflects on new insights about climate variability from isotopic studies. We highlight new work and opportunities to enhance our understanding and predictive skill and offer a set of recommendations to advance observational and model-based tools for climate research. Finally, we highlight opportunities to better constrain climate sensitivity and identify anthropogenically-driven hydrologic changes within the inherently noisy background of natural climate variability.more » « less
- 
            Sub-cloud rain evaporation in the trade wind region significantly influences the boundary layer mass and energy budgets. Parameterizing it is, however, difficult due to the sparsity of well-resolved rain observations and the challenges of sampling short-lived marine cumulus clouds. In this study, sub-cloud rain evaporation is analyzed using a steady-state, one-dimensional model that simulates changes in drop sizes, relative humidity, and rain isotopic composition. The model is initialized with relative humidity, raindrop size distributions, and water vapor isotope ratios (e.g., δDv, δ18Ov) sampled by the NOAA P3 aircraft during the Atlantic Tradewind Ocean–Atmosphere Mesoscale Interaction Campaign (ATOMIC), which was part of the larger EUREC4A (ElUcidating the RolE of Clouds–Circulation Coupling in ClimAte) field program. The modeled surface precipitation isotope ratios closely match the observations from EUREC4A ground-based and ship-based platforms, lending credibility to our model. The model suggests that 63 % of the rain mass evaporates in the sub-cloud layer across 22 P3 cases. The vertical distribution of the evaporated rain flux is top heavy for a narrow (σ) raindrop size distribution (RSD) centered over a small geometric mean diameter (Dg) at the cloud base. A top-heavy profile has a higher rain-evaporated fraction (REF) and larger changes in the rain deuterium excess (d=δD-8×δ18O) between the cloud base and the surface than a bottom-heavy profile, which results from a wider RSD with larger Dg. The modeled REF and change in d are also more strongly influenced by cloud base Dg and σ rather than the concentration of raindrops. The model results are accurate as long as the variations in the relative humidity conditions are accounted for. Relative humidity alone, however, is a poor indicator of sub-cloud rain evaporation. Overall, our analysis indicates the intricate dependence of sub-cloud rain evaporation on both thermodynamic and microphysical processes in the trade wind region.more » « less
- 
            Abstract Atmospheric humidity and soil moisture in the Amazon forest are tightly coupled to the region’s water balance, or the difference between two moisture fluxes, evapotranspiration minus precipitation (ET-P). However, large and poorly characterized uncertainties in both fluxes, and in their difference, make it challenging to evaluate spatiotemporal variations of water balance and its dependence on ET or P. Here, we show that satellite observations of the HDO/H 2 O ratio of water vapor are sensitive to spatiotemporal variations of ET-P over the Amazon. When calibrated by basin-scale and mass-balance estimates of ET-P derived from terrestrial water storage and river discharge measurements, the isotopic data demonstrate that rainfall controls wet Amazon water balance variability, but ET becomes important in regulating water balance and its variability in the dry Amazon. Changes in the drivers of ET, such as above ground biomass, could therefore have a larger impact on soil moisture and humidity in the dry (southern and eastern) Amazon relative to the wet Amazon.more » « less
- 
            null (Ed.)Abstract The stable isotope ratios of oxygen and hydrogen in polar ice cores are known to record environmental change, and they have been widely used as a paleothermometer. Although it is known to be a simplification, the relationship is often explained by invoking a single condensation pathway with progressive distillation to the temperature at the location of the ice core. In reality, the physical factors are complicated, and recent studies have identified robust aspects of the hydrologic cycle’s response to climate change that could influence the isotope-temperature relationship. In this study, we introduce a new zonal-mean isotope model derived from radiative transfer theory, and incorporate it into a recently developed moist energy balance climate model (MEBM), thus providing an internally consistent representation of the tight physical coupling between temperature, hydrology, and isotope ratios in the zonal-mean climate. The isotope model reproduces the observed pattern of meteoric δ 18 O in the modern climate, and allows us to evaluate the relative importance of different processes for the temporal correlation between δ 18 O and temperature at high latitudes. We find that the positive temporal correlation in polar ice cores is predominantly a result of suppressed high-latitude evaporation with cooling, rather than local temperature changes. The same mechanism also explains the difference in the strength of the isotope-temperature relationship between Greenland and Antarctica.more » « less
- 
            {"Abstract":["This dataset contains monthly average output files from the iCAM6\n simulations used in the manuscript "Enhancing understanding of the\n hydrological cycle via pairing of process-oriented and isotope ratio\n tracers," in review at the Journal of Advances in Modeling Earth\n Systems. A file corresponding to each of the tagged and isotopic variables\n used in this manuscript is included. Files are at 0.9° latitude x 1.25°\n longitude, and are in NetCDF format. Data from two simulations are\n included: 1) a simulation where the atmospheric model was\n "nudged" to ERA5 wind and surface pressure fields, by adding an\n additional tendency (see section 3.1 of associated manuscript), and 2) a\n simulation where the atmospheric state was allowed to freely evolve, using\n only boundary conditions imposed at the surface and top of atmosphere.\n Specific information about each of the variables provided is located in\n the "usage notes" section below. Associated article abstract:\n The hydrologic cycle couples the Earth's energy and carbon budgets\n through evaporation, moisture transport, and precipitation. Despite a\n wealth of observations and models, fundamental limitations remain in our\n capacity to deduce even the most basic properties of the hydrological\n cycle, including the spatial pattern of the residence time (RT) of water\n in the atmosphere and the mean distance traveled from evaporation sources\n to precipitation sinks. Meanwhile, geochemical tracers such as stable\n water isotope ratios provide a tool to probe hydrological processes, yet\n their interpretation remains equivocal despite several decades of use. As\n a result, there is a need for new mechanistic tools that link variations\n in water isotope ratios to underlying hydrological processes. Here we\n present a new suite of \u201cprocess-oriented tags,\u201d which we use to explicitly\n trace hydrological processes within the isotopically enabled Community\n Atmosphere Model, version 6 (iCAM6). Using these tags, we test the\n hypotheses that precipitation isotope ratios respond to parcel rainout,\n variations in atmospheric RT, and preserve information regarding\n meteorological conditions during evaporation. We present results for a\n historical simulation from 1980 to 2004, forced with winds from the ERA5\n reanalysis. We find strong evidence that precipitation isotope ratios\n record information about atmospheric rainout and meteorological conditions\n during evaporation, but little evidence that precipitation isotope ratios\n vary with water vapor RT. These new tracer methods will enable more robust\n linkages between observations of isotope ratios in the modern hydrologic\n cycle or proxies of past terrestrial environments and the environmental\n processes underlying these observations. "],"Methods":["Details about the simulation setup can be found in section 3 of the\n associated open-source manuscript, "Enhancing understanding of the\n hydrological cycle via pairing of process\u2010oriented and isotope ratio\n tracers." In brief, we conducted two simulations of the atmosphere\n from 1980-2004 using the isotope-enabled version of the Community\n Atmosphere Model 6 (iCAM6) at 0.9x1.25° horizontal resolution, and with 30\n vertical hybrid layers spanning from the surface to ~3 hPa. In the first\n simulation, wind and surface pressure fields were "nudged"\n toward the ERA5 reanalysis dataset by adding a nudging tendency,\n preventing the model from diverging from observed/reanalysis wind fields.\n In the second simulation, no additional nudging tendency was included, and\n the model was allowed to evolve 'freely' with only boundary\n conditions provided at the top (e.g., incoming solar radiation) and bottom\n (e.g., observed sea surface temperatures) of the model. In addition to the\n isotopic variables, our simulation included a suite of\n 'process-oriented tracers,' which we describe in section 2 of\n the manuscript. These variables are meant to track a property of water\n associated with evaporation, condensation, or atmospheric transport."],"Other":["Metadata are provided about each of the files below; moreover, since the\n attached files are NetCDF data - this information is also provided with\n the data files. NetCDF metadata can be accessed using standard tools\n (e.g., ncdump). Each file has 4 variables: the tagged quantity, and the\n associated coordinate variables (time, latitude, longitude). The latter\n three are identical across all files, only the tagged quantity changes.\n Twelve files are provided for the nudged simulation, and an additional\n three are provided for the free simulations: Nudged simulation files\n iCAM6_nudged_1980-2004_mon_RHevap: Mass-weighted mean evaporation source\n property: RH (%) with respect to surface temperature.\n iCAM6_nudged_1980-2004_mon_Tevap: Mass-weighted mean evaporation source\n property: surface temperature in Kelvin\n iCAM6_nudged_1980-2004_mon_Tcond: Mass-weighted mean condensation\n property: temperature (K) iCAM6_nudged_1980-2004_mon_columnQ: Total\n (vertically integrated) precipitable water (kg/m2). Not a tagged\n quantity, but necessary to calculate depletion times in section 4.3 (e.g.,\n Fig. 11 and 12). iCAM6_nudged_1980-2004_mon_d18O: Precipitation d18O (\u2030\n VSMOW) iCAM6_nudged_1980-2004_mon_d18Oevap_0: Mass-weighted mean\n evaporation source property - d18O of the evaporative flux (e.g., the\n 'initial' isotope ratio prior to condensation), (\u2030 VSMOW)\n iCAM6_nudged_1980-2004_mon_dxs: Precipitation deuterium excess (\u2030 VSMOW) -\n note that precipitation d2H can be calculated from this file and the\n precipitation d18O as d2H = d-excess - 8*d18O.\n iCAM6_nudged_1980-2004_mon_dexevap_0: Mass-weighted mean evaporation\n source property - deuterium excess of the evaporative flux\n iCAM6_nudged_1980-2004_mon_lnf: Integrated property - ln(f) calculated\n from the constant-fractionation d18O tracer (see section 3.2).\n iCAM6_nudged_1980-2004_mon_precip: Total precipitation rate in m/s. Note\n there is an error in the metadata in this file - it is total\n precipitation, not just convective precipitation.\n iCAM6_nudged_1980-2004_mon_residencetime: Mean atmospheric water residence\n time (in days). iCAM6_nudged_1980-2004_mon_transportdistance: Mean\n atmospheric water transport distance (in km). Free simulation files\n iCAM6_free_1980-2004_mon_d18O: Precipitation d18O (\u2030 VSMOW)\n iCAM6_free_1980-2004_mon_dxs: Precipitation deuterium excess (\u2030 VSMOW) -\n note that precipitation d2H can be calculated from this file and the\n precipitation d18O as d2H = d-excess - 8*d18O.\n iCAM6_free_1980-2004_mon_precip: Total precipitation rate in m/s. Note\n there is an error in the metadata in this file - it is total\n precipitation, not just convective precipitation."]}more » « less
- 
            Abstract The National Ecological Observatory Network (NEON) provides open-access measurements of stable isotope ratios in atmospheric water vapor (δ2H, δ18O) and carbon dioxide (δ13C) at different tower heights, as well as aggregated biweekly precipitation samples (δ2H, δ18O) across the United States. These measurements were used to create the NEON Daily Isotopic Composition of Environmental Exchanges (NEON-DICEE) dataset estimating precipitation (P; δ2H, δ18O), evapotranspiration (ET; δ2H, δ18O), and net ecosystem exchange (NEE; δ13C) isotope ratios. Statistically downscaled precipitation datasets were generated to be consistent with the estimated covariance between isotope ratios and precipitation amounts at daily time scales. Isotope ratios in ET and NEE fluxes were estimated using a mixing-model approach with calibrated NEON tower measurements. NEON-DICEE is publicly available on HydroShare and can be reproduced or modified to fit user specific applications or include additional NEON data records as they become available. The NEON-DICEE dataset can facilitate understanding of terrestrial ecosystem processes through their incorporation into environmental investigations that require daily δ2H, δ18O, and δ13C flux data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
